Sheaves on Artin Stacks

نویسنده

  • MARTIN OLSSON
چکیده

We develop a theory of quasi–coherent and constructible sheaves on algebraic stacks correcting a mistake in the recent book of Laumon and Moret-Bailly. We study basic cohomological properties of such sheaves, and prove stack–theoretic versions of Grothendieck’s Fundamental Theorem for proper morphisms, Grothendieck’s Existence Theorem, Zariski’s Connectedness Theorem, as well as finiteness Theorems for proper pushforwards of coherent and constructible sheaves. We also explain how to define a derived pullback functor which enables one to carry through the construction of a cotangent complex for a morphism of algebraic stacks due to Laumon and Moret–Bailly. 1.1. In the book ([LM-B]) the lisse-étale topos of an algebraic stack was introduced, and a theory of quasi–coherent and constructible sheaves in this topology was developed. Unfortunately, it was since observed by Gabber and Behrend (independently) that the lisse-étale topos is not functorial as asserted in (loc. cit.), and hence the development of the theory of sheaves in this book is not satisfactory “as is”. In addition, since the publication of the book ([LM-B]), several new results have been obtained such as finiteness of coherent and étale cohomology ([Fa], [Ol]) and various other consequences of Chow’s Lemma ([Ol]). The purpose of this paper is to explain how one can modify the arguments of ([LM-B]) to obtain good theories of quasi–coherent and constructible sheaves on algebraic stacks, and in addition we provide an account of the theory of sheaves which also includes the more recent results mentioned above. 1.2. The paper is organized as follows. In section 2 we recall some aspects of the theory of cohomological descent ([SGA4], V) which will be used in what follows. In section 3 we review the basic definitions of the lisse-étale site, cartesian sheaves over a sheaf of algebras, and verify some basic properties of such sheaves. In section 4 we relate the derived category of cartesian sheaves over some sheaf of rings to various derived categories of sheaves on the simplicial space obtained from a covering of the algebraic stack by an algebraic space. Loosely speaking the main result states that the cohomology of a complex with cartesian cohomology sheaves can be computed by restricting to the simplicial space obtained from a covering and computing cohomology on this simplicial space using the étale topology. In section 5 we generalize these results to comparisons between Ext–groups computed in the lisse-étale topos and Ext–groups computed using the étale topology on a hypercovering. In section 6 we specialize the discussion of sections 3-5 to quasi–coherent sheaves. We show that if X is an algebraic stack and OXlis-et denotes the structure sheaf of the lisse-étale topos, then the triangulated category D qcoh(X ) of bounded below complexes of OXlis-et–modules with quasi–coherent cohomology sheaves satisfies all the basic properties that one would expect from the theory for schemes. For example we show in this section that if f : X → Y is a quasi–compact morphism of algebraic stacks and M is a quasi–coherent sheaf on X Date: November 2, 2005. 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli of Twisted Sheaves

We study moduli of semistable twisted sheaves on smooth proper morphisms of algebraic spaces. In the case of a relative curve or surface, we prove results on the structure of these spaces. For curves, they are essentially isomorphic to spaces of semistable vector bundles. In the case of surfaces, we show (under a mild hypothesis on the twisting class) that the spaces are asympotically geometric...

متن کامل

Tangent Lie algebra of derived Artin stacks

Since the work of Mikhail Kapranov in [Kap], it is known that the shifted tangent complex TX r ́1s of a smooth algebraic variety X is endowed with a weak Lie structure. Moreover any complex of quasi-coherent sheaves on X is endowed with a weak Lie action of this tangent Lie algebra. We will generalize this result to (finite enough) derived Artin stacks, without any smoothness assumption. This in...

متن کامل

Enhanced Six Operations and Base Change Theorem for Artin Stacks

In this article, we develop a theory of Grothendieck’s six operations for derived categories in étale cohomology of Artin stacks. We prove several desired properties of the operations, including the base change theorem in derived categories. This extends all previous theories on this subject, including the recent one developed by Laszlo and Olsson, in which the operations are subject to more as...

متن کامل

Moduli stacks and invariants of semistable objects on K3 surfaces

For a K3 surface X and its bounded derived category of coherent sheaves D(X), we have the notion of stability conditions on D(X) in the sense of T.Bridgeland. In this paper, we show that the moduli stack of semistable objects in D(X) with a fixed numerical class and a phase is represented by an Artin stack of finite type over C. Then following D.Joyce’s work, we introduce the invariants countin...

متن کامل

Formal Gaga on Artin Stacks

Suppose X is a locally noetherian Deligne–Mumford stack. Definition 1.2 has an obvious variant X̂ét using the underlying smaller étale site Xét and the restriction Oc Xét of Oc X to this site. By [3, 12.7.4], the category of cartesian Oc X -modules on Xlis-ét is equivalent to the category of Oc Xét-modules on Xét: (1.1) ModXlis-ét,cart(Oc X ) ' ModXét(Oc Xét) Definition 1.3. Let X be a locally n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005